
OpsOrbital: Real-Time Server Operations from Your Pocket

Yuan Guo
gy2022@sjtu.edu.cn

Junran Zhang
junran_618@sjtu.edu.cn

Abstract
This technical report presents our group project
for SJTU CS3338, Computer Network (Honor).
In this work, we introduce OPSORBITAL, a
novel and practical framework designed for
the supervision of CS/AI-related experiments.
OPSORBITAL offers a scenario-specific, con-
venient, and user-friendly solution for remote
server management on mobile devices. Built
on a server-client architecture, the framework
consists of a server script running on the re-
mote server and a client app on an Android
device. Through thoughtful front-end and back-
end design, OPSORBITAL enables users to eas-
ily inspect, control, and receive notifications
about their remote server status via mobile de-
vices. Key features include real-time monitor-
ing of system resources, network details, and
processes, as well as functionalities like run-
ning scripts, killing processes, adjusting hy-
perparameters, and receiving timely notifica-
tions. By simplifying server monitoring and
control, OPSORBITAL significantly enhances
the efficiency of computer science researchers,
enabling them to manage their servers from
anywhere. Project resources, including a video
demo, code, and slides, are available on the offi-
cial project website: opsorbital.github.io.

1 Introduction

Contemporary computer science research often in-
volves time-intensive experiments, particularly in
the burgeoning fields of AI and LLM research,
where extensive model training and benchmark
evaluations are routine. Researchers are typically
unable to obtain immediate experimental results.
As a result, a common practice is to execute exper-
iments as background processes (using tools like
tmux or screen) and intermittently monitor their
progress. However, this approach often introduces
several challenges:

• When researchers are away from their worksta-
tions (e.g., needing to check experiment status

while out for other tasks), it becomes inconve-
nient to monitor the progress or control the pro-
cess (e.g., terminate a specific experiment or ini-
tiate another script).

• Researchers may miss timely updates on the ex-
periment status (e.g., completion or failure), lead-
ing to unnecessary delays and inefficiencies.

Despite the evident need for a convenient,
portable, and user-friendly tool for monitoring and
managing experiments, limited efforts have been
made to address this gap. Existing solutions in-
clude remote desktop applications (ToDesk Inc.,
2025; RustDesk Project, 2025) and mobile SSH
clients (Feng, 2025), but these are often too gener-
alized and cumbersome for specific use cases. For
example, using command-line interfaces and key-
board shortcuts on mobile devices can be overly
complex.

Other tools like tf-watcher (Dagli, 2023), de-
veloped some years ago, are restricted to monitor-
ing TensorFlow-based models and require modi-
fications to experimental code. Weight and Bias
(W&B) (Biases, 2025), a popular framework for
training monitoring, focuses on training processes
and pays little attention to the server’s overall sys-
tem status. Additionally, both tf-watcher and W&B
are primarily monitoring tools with limited support
for control operations. As a result, they are not well-
suited for real-world scenarios. According to our
survey of over 50 Ph.D. students and researchers
from institutions such as SJTU, PKU, HKU, and
companies like ByteDance, no existing tools have
gained wide adoption for addressing these specific
needs.

To bridge this gap and provide an effective solu-
tion for computer science researchers, we propose
an application that offers the following functionali-
ties:

1. Effortlessly check the server’s status (e.g., pro-

1

opsorbital.github.io


Figure 1: Function Overview of OPSORBITAL

cesses, GPU usage, CPU utilization, and net-
work status) on mobile devices.

2. Conveniently track the progress of specific
experiments (e.g., real-time training logs for
model training) on mobile devices.

3. Receive timely notifications about experiment
statuses (e.g., completion, unexpected termina-
tion, or system warnings).

4. Perform essential operations on mobile devices,
including terminating processes, running scripts,
managing script queues and setting experiment
configurations.

To meet these requirements, we developed OP-
SORBITAL, a novel, lightweight, and practical
framework for remote server supervision. The pro-
posed framework comprises two components: a
server program and a client application. Through
a carefully crafted front-end and back-end design,
OPSORBITAL is capable of handling a wide range
of server-related tasks, including inspection, noti-
fication, and control. A detailed overview of OP-
SORBITAL’s functionalities is provided in Figure 1.

Our project offers several key advantages:

1. Novel: To the best of our knowledge, this is the
first mobile remote control framework specifi-
cally designed for task scheduling in computer
science research. Our work incorporates inno-
vative software designs to address challenging
functionalities.

2. User-Friendly: The framework features an intu-
itive interface that simplifies remote monitoring
and control, overcoming the typical challenges
of using mobile devices for server operations.

3. Lightweight: OPSORBITAL’s scenario-specific
focus ensures a lightweight design that enhances
accessibility and ease of use.

4. Extensible: The framework serves as a ro-
bust codebase for lightweight communication
and control between mobile devices and remote
servers. Developers can easily extend its capa-
bilities. Additionally, with SSH forwarding, the
framework is compatible with a diverse range
of servers.

2 Related Work

2.1 Remote Device Control

Remote desktop and mobile SSH applications are
two primary approaches that allow users to ac-
cess and control computers from mobile devices.
ToDesk (ToDesk Inc., 2025) provides users with
full control over a remote device, while Rust-
Desk (RustDesk Project, 2025) offers an open-
source remote desktop platform with options for
self-hosted servers, ensuring user privacy and con-
trol. Additionally, mobile SSH clients, such as
Mobile SSH (Secure Shell) (Feng, 2025), enable
users to manage remote servers directly through
command-line from their smartphones, facilitating
on-the-go system administration.

However, while these applications may appear
useful, they fall short in addressing the specific
needs of CS experiment monitoring. Remote desk-
top applications are typically designed for general
operations, such as those performed on Windows
systems, making them overly complex and redun-
dant for the focused requirements of computer sci-
ence research and experimentation. Similarly, mo-
bile SSH applications lack user-friendly interfaces
for mobile devices and do not support proactive no-
tifications—an essential feature for mobile-based
server monitoring tools. Additionally, perform-
ing operations that rely on keyboard shortcuts or
command-line inputs is cumbersome on mobile
devices, further limiting their practicality. Con-
sequently, these solutions are not well-suited for
the specific and popular scenarios faced by CS re-
searchers.

2



2.2 AI Training Monitor
Efforts have also been made to develop AI training
monitors that provide timely tracking of AI training
processes. TF-Watcher (Dagli, 2023) is an open-
source project designed for monitoring, visualizing,
and sharing machine learning training progress on
mobile devices. Other well-known frameworks,
such as Tensorboard (Project, 2025b) and Weight-
and-Bias (W&B) (Biases, 2025), are widely used
for tracking and visualizing the status of AI tasks.

Although these tools can support the tracking of
specific AI tasks to some extent, they have signif-
icant limitations. Many of these tools are highly
dependent on the explicit integration of their pack-
ages into training scripts, restricting their applica-
bility to single training process tracking. Moreover,
these AI training monitors primarily focus on data
analysis and visualization, with minimal support
for system-level supervision and control operations.
As a result, they fail to provide the comprehensive
functionality required for broader server monitor-
ing and control.

3 Design and Implementation of
OPSORBITAL

3.1 Overall Functions and Framework Design
In the specific scenario of computer science ex-
periments, we developed OPSORBITAL, a mobile
device-based remote server management frame-
work designed to address the challenges of remote
experiment supervision. The framework revolves
around three core functional categories: Inspection,
Control, and Notification. This design prioritizes
seamless interaction and efficiency, providing users
with a practical and effective tool for server man-
agement.

1. Inspection: Users can obtain real-time informa-
tion about server system resources through the
mobile application, including:

• CPU and GPU utilization
• Memory usage and allocation
• Network interface status
• Running process list and detailed information
• Real-time Tmux window interface preview

2. Control: The framework supports essential op-
erations for computer science experiments, in-
cluding:

• Process management: Terminating specific
processes

Figure 2: Design structure Overview of OPSORBITAL

• File system operations: Editing configuration
files

• GPU resource scheduling: Selecting specific
GPUs to execute Python or Bash scripts

3. Notification: The application incorporates
proactive monitoring and alerting capabilities:

• Detecting system anomalies
• Monitoring and detecting termination of

Tmux window processes
• Pushing critical events and notifications di-

rectly to the mobile device

Architectural Design: The framework adopts a
classic client-server architecture (as shown in Fig-
ure 2), with distinct client and server components
to ensure flexibility and scalability:

• Client (Mobile Application):

– Designed for responsive and intuitive interac-
tion

– Capable of managing diverse functional mod-
ules for inspection, control, and notifications

– Handles network requests and processes server
responses efficiently

• Server-side:

– Handles client requests and provides system
resource and process information

– Implements robust user authentication mecha-
nisms

– Supports proxy forwarding for servers without
public IP access

Implementation Details: The server was de-
veloped using Python with the Flask framework
to ensure lightweight and efficient communication.
Additionally, the framework includes a streamlined
PC client for enhanced monitoring of CPU and

3



GPU usage. The mobile application was imple-
mented for Android devices, adhering to the Model-
View-Controller (MVC) architecture to maintain
modularity and scalability.

Security remains a cornerstone of the framework,
with mechanisms for user authentication, encrypted
communication, and fine-grained access control to
ensure the safety and privacy of server operations.
This design effectively addresses the diverse needs
of computer science experiments while delivering
a user-friendly and efficient remote server manage-
ment experience.

3.2 Account Management
For user account management, we implement lo-
gin and registration functions, along with initial
support for user group functionality.

The registration function is a critical component
of the user management system. It begins with
input parameter validation to ensure that the user-
name and password fields are not empty. Unique-
ness checks are performed for both the username
and the device MAC address. By querying the
database, the system verifies whether the username
already exists and, if a MAC address is provided,
ensures it is not already associated with another
user. For user group management, if no group ID
is specified during registration, a new device group
is automatically created, named after the username,
and the registering user is assigned as the group
administrator. Once all validations are passed, rel-
evant data is inserted into the users and devices
tables, including user ID, hashed password, salt,
email (optional), group ID, and device details such
as device ID, name, type, token, MAC address, and
online status. The registration function also incor-
porates robust error handling, specifically address-
ing database integrity issues and other exceptions,
ensuring clear and actionable feedback to the user.

The login function is primarily focused on user
verification. It queries the database using the pro-
vided username to retrieve the password, salt, and
group ID, and then verifies the input password
against the stored one using a password verification
method. If a MAC address is provided, the system
checks whether it is associated with another user.
For device and session management, the function
generates a unique device token and either inserts
or updates the device information in the devices
table. Additionally, a session record is created, con-
taining details such as session ID, user ID, device
ID, session token, and expiration time. The user’s

last login time is also updated. Upon successful
login, the function returns a dictionary containing
essential details such as the session token, user ID,
group ID, and device ID, which are crucial for sub-
sequent operations. Comprehensive exception han-
dling ensures that all potential errors are addressed,
detailed error information is logged, and a failure
gracefully returns ‘None‘, thereby enhancing the
robustness and reliability of the authentication pro-
cess.

3.3 Connection Management

In this section, we outline the connection manage-
ment design of our project, including the connec-
tion protocol, methodology, and request forwarding
implementation.

Our implementation adopts a standard client-
server architecture and leverages Flask for com-
munication management. When a user performs
communication-related actions in the mobile app,
such as requesting information or executing opera-
tions, these actions trigger corresponding requests
to the server. For the mobile application, we utilize
the OKHttp library, a robust and efficient HTTP
client for Android. OKHttp streamlines network
communication by offering features such as con-
nection pooling, transparent GZIP compression,
response caching, and asynchronous request han-
dling to prevent blocking the main thread. These
capabilities enhance both the efficiency and relia-
bility of network communication, making OKHttp
an optimal choice for managing mobile application
requests (Project, 2025a).

In scenarios where the server lacks a public IP ad-
dress or faces restrictions for external connections,
we incorporate SSH forwarding with a relay server
as a simple yet effective solution. Drawing inspira-
tion from popular remote control applications like
ToDesk, we deploy an intermediary server with a
public IP address as the relay. This relay server
facilitates secure communication between the mon-
itored server and the client device. By establishing
an SSH tunnel, the monitored server forwards its
data or services through the relay server, effectively
bypassing network constraints or the absence of a
public IP. This method ensures seamless connectiv-
ity, reduces latency, and enhances security through
encrypted communication channels. Additionally,
it enables real-time monitoring and remote access
without the need for complex network reconfigura-
tions or VPN setups.

4



3.4 Server Information Transmission

With the connection mechanism in place, the next
step involves designing various request types to
retrieve detailed server information across multi-
ple dimensions. Some app interfaces for server
information demonstration is shown in Figure 3.

The back-end logic on the server side has been
carefully implemented to facilitate the collection of
diverse server information. For CPU and memory
details, we utilize the platform library for proces-
sor information and psutil for core count, usage,
and memory status. These metrics are returned
in a structured dictionary format, which includes
attributes such as core count, usage percentage,
and frequency. To gather network details, psu-
til.net_if_addrs is used to obtain interface infor-
mation, such as IP address and netmask. This data
is organized into a list of dictionaries for each net-
work interface. To access the file system, we pro-
vide an endpoint (/get_file_system) that recursively
constructs a tree structure starting from the root
directory. This data is transmitted in JSON format
and includes hierarchical details about directories
and files, with attributes like name, type (directory
or file), and child nodes for directories. Permission
errors or inaccessible paths are gracefully handled
by adding error nodes to the tree structure. This im-
plementation ensures a seamless and user-friendly
way to query and represent complex system de-
tails in a format easily consumable by client-side
applications.

A critical requirement for monitoring computer
science experiments is the ability to observe real-
time console output, such as training and evaluation
logs. To address this, we have implemented this
functionality specifically for tmux windows. Tmux,
a terminal multiplexer, allows users to manage mul-
tiple terminal sessions within a single window. It
is particularly advantageous for running and mon-
itoring long-duration processes, parallel tasks, or
remote sessions, as tmux sessions persist even af-
ter disconnection. Its additional benefits include
enhanced productivity, session recovery, and the
capability to split terminal screens for multitasking.

To support this functionality, we designed a
Tmux table interface that allows users to view all
sessions and windows on the remote server. Addi-
tionally, a Tmux detail interface synchronizes real-
time details of specific tmux windows with the mo-
bile application, enabling users to track experiment
progress and monitor real-time logs. This same

Figure 3: OPSORBITAL interface of system status, pro-
cesses and tmux details

Figure 4: OPSORBITAL interface of terminating process,
setting configuration, and running script

information transmission pipeline is also utilized
in the background monitoring system for detecting
process termination events.

3.5 Common Remote Control

We have implemented several simple yet essential
control functionalities in our project, including pro-
cess termination, execution of Python and Bash
scripts with a single click, and adjusting hyper-
parameter configuration files through the mobile
interface. Typical app interface for common remote
control is demonstrated in Figure 4

Support for process termination is available in
both the "My Process" and "Tmux Monitor" ses-
sions. In the "My Process" session, users can in-
teract with a specific process by selecting its name,
which triggers a prompt asking whether to termi-
nate the process. If the termination operation is
confirmed, the client sends the corresponding pro-
cess ID along with a ‘kill_process‘ request to the
remote server. The server validates permissions
and terminates the process associated with the pro-
vided process ID.

File editing support in the current version of
OPSORBITAL is tailored to Llama-Factory argu-
ment configuration. Llama-Factory (Zheng et al.,

5



2024) is a widely used open-source framework
for training Large Language Models (LLMs). It
encompasses all stages of LLM training and sup-
ports nearly all commonly used open-source LLMs.
Officially recommended by the Qwen group, the
framework standardizes training configurations in
a ‘.yaml‘ file format, with key-value pairs specify-
ing the arguments. To facilitate this, we have im-
plemented data transmission, parsing, and display
logic, enabling users to edit these configurations
directly through the mobile interface by adjusting
editable fields. When the "save" option is selected,
the updated YAML content is sent to the server as
a string, where it overwrites the existing configura-
tion file.

Another key control feature is the run-script func-
tionality. In the file system interface, the back-end
checks the file’s suffix upon selection. If the suffix
matches predefined criteria (e.g., ‘.py‘ for Python
scripts or ‘.sh‘ for Bash scripts), corresponding han-
dling logic is invoked. For ‘.sh‘ scripts, the system
creates a new tmux session and executes the script
within it. For ‘.py‘ scripts, the client retrieves and
displays GPU usage information from the server.
The user can then select specific GPUs as needed
and execute the Python script accordingly.

These control functionalities simplify remote
server management, making essential operations
more accessible and user-friendly for researchers.

3.6 Background Monitor
One of the key features of OPSORBITAL is its back-
ground monitoring functionality. This module al-
lows the system to periodically check the status of
the remote server, transitioning the server informa-
tion retrieval process from a reactive to a proactive
approach. By leveraging this functionality, users
can receive timely notifications on their mobile
devices regarding server anomalies or process ter-
mination events.

The background monitoring module comprises
three main components: the Permission Checker,
Boot Receiver, and Monitoring Service. The
Permission Checker operates during the login
stage of the OPSORBITAL app, ensuring that the
necessary system permissions are granted and
prompting users to adjust permission settings if
required. The Boot Receiver listens for the ‘AN-
DROID_BOOT_COMPLETED‘ signal, enabling
the monitoring module to initialize automatically
upon device boot. The Monitoring Service periodi-
cally and automatically retrieves server status using

Figure 5: Two types of notification message in OPSOR-
BITAL

the established connection module. When an ab-
normal server status is detected, such as anomalies
or the termination of a process within a Tmux win-
dow, the system sends a high-priority notification
directly to the user’s mobile device.

This proactive background monitoring function-
ality enhances the user experience by providing
real-time updates and alerts, ensuring that users re-
main informed about critical server events without
requiring constant manual intervention.

3.7 Security Management
Considering our application offers remote control
of the remote server like killing certain process,
running script and editing configuration file, we
have adopted multiple approaches to ensure the
security of our system.

3.7.1 Authentication Mechanism
1. Password Security

• Utilizes PBKDF2 (Password-Based Key
Derivation Function 2) with SHA-256

• Applies 100,000 iterations for password hash-
ing

• Generates a unique cryptographic salt for each
user

• Prevents rainbow table and dictionary attacks

2. Session Management

• Generates UUID-based session tokens
• Token expiration set to 7 days

6



• Implements stateless authentication mecha-
nism

• Supports multiple device sessions per user

3. Request Protection

• Rate limiting to prevent brute-force attacks
• IP-based request tracking
• Anti-replay protection using request hash

tracking
• Maximum 10 requests per 60 seconds per IP

3.7.2 Security Enhancements
• Input Validation

– Regex-based input sanitization
– Prevents SQL injection and XSS attacks
– Enforces strict input length and character re-

strictions

• Logging and Auditing

– Comprehensive event logging
– Tracks authentication attempts
– Captures system and user activity

Key Security Principles:

• One-to-one device and user binding

• Cryptographically secure password storage

• Flexible, role-based group management

• Comprehensive request validation

• Continuous security monitoring

4 Future Work

We acknowledge that not all of our ideas have been
fully implemented, primarily due to the constraints
of being a two-person team with limited time. Be-
yond the designs presented above, we have iden-
tified several areas for improvement and further
development in subsequent versions:

1. Enhanced UI Design and Visualization: We
aim to improve the interface layout to make it
more user-friendly and intuitive. Additionally,
we plan to incorporate more advanced visualiza-
tion features. For instance, GPU usage could
be displayed not only as text but also through
graphical representations, making it easier for
users to interpret the data at a glance.

2. Support for Additional Operations: Leverag-
ing the extensible nature of the OPSORBITAL

framework, we plan to continue expanding its
functionality to include more common opera-
tions. For example, in the hyper-parameter ad-
justment feature, our current implementation
supports only ‘.yaml‘ files for Llama-Factory
configuration. Future updates will extend sup-
port to other data formats, such as ‘.json‘, for
training and evaluation configurations.

3. Improved Security Measures: We aim to en-
hance the security of the framework by refining
the authentication mechanism and transitioning
to more secure communication protocols. This
will ensure better protection of user data and
server operations.

4. iOS App Development: Currently, the mobile
app is available only for Android devices. We
plan to develop an iOS version to make this tool
more widely accessible to a broader range of
users.

5 Conclusion

In this work, we introduced OPSORBITAL, a novel
and lightweight framework for real-time remote
server supervision, specifically designed to ad-
dress the unique needs of computer science re-
searchers. By providing a seamless interface for
mobile devices, OPSORBITAL bridges the gap be-
tween server management and convenience, em-
powering users to monitor, control, and receive
timely notifications about their remote servers re-
gardless of their location. Through its innovative
design, the framework achieves a delicate balance
between functionality, user-friendliness, and exten-
sibility.

Our implementation not only focuses on system
resource inspection, real-time training log moni-
toring, and proactive notifications but also extends
to remote control functionalities such as process
termination, script execution, and configuration
file editing. Security remains a cornerstone of our
framework, ensuring that user data and operations
are protected through robust authentication mecha-
nisms, encrypted communication, and fine-grained
access control.

With its scenario-specific, lightweight, and ex-
tensible design, OPSORBITAL stands as a versatile
and valuable tool for researchers. Beyond the func-
tionalities presented, the framework holds signifi-
cant potential for future enhancements, including

7



better visualization, support for more operations,
improved security, and expansion to additional plat-
forms like iOS. We believe OPSORBITAL not only
fills an important gap in existing tools but also
opens new avenues for efficient server management
in computer science research.

6 Acknowledgment

We extend our heartfelt gratitude to Prof. Linghe
Kong for his exceptional teaching, which intro-
duced us to the fascinating world of Computer Net-
works. His thoughtfully designed course structure
encouraged us to freely explore this domain, and
his invaluable feedback played a crucial role in
refining our project. We also sincerely thank Dr.
Jiaming Liu for his dedication and support as our
TA throughout this endeavor.

References
Weights & Biases. 2025. W&b: Experiment track-

ing and model management tool. https://github.
com/wandb/wandb. Accessed: 2025-01-02.

Rishit Dagli. 2023. Tf-watcher: A tool for monitor-
ing tensorflow experiments. https://github.com/
Rishit-dagli/TF-Watcher. Accessed: 2025-01-
02.

Gao Feng. 2025. Mobile ssh (secure shell).
https://play.google.com/store/apps/
details?id=mobileSSH.feng.gao. Accessed:
2025-01-03.

OkHttp Project. 2025a. Okhttp. https://square.
github.io/okhttp/. Accessed: 2025-01-02.

TensorBoard Project. 2025b. Tensorboard: Ten-
sorflow’s visualization toolkit. https://www.
tensorflow.org/tensorboard. Accessed: 2025-
01-02.

RustDesk Project. 2025. Rustdesk: Open-source remote
desktop with self-hosted server solutions. https:
//rustdesk.com. Accessed: 2025-01-03.

ToDesk Inc. 2025. Todesk: Free, secure, and smooth re-
mote desktop software. https://www.todesk.com.
Accessed: 2025-01-03.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.
2024. Llamafactory: Unified efficient fine-tuning
of 100+ language models. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 3: System Demonstra-
tions), Bangkok, Thailand. Association for Computa-
tional Linguistics.

8

https://github.com/wandb/wandb
https://github.com/wandb/wandb
https://github.com/Rishit-dagli/TF-Watcher
https://github.com/Rishit-dagli/TF-Watcher
https://play.google.com/store/apps/details?id=mobileSSH.feng.gao
https://play.google.com/store/apps/details?id=mobileSSH.feng.gao
https://square.github.io/okhttp/
https://square.github.io/okhttp/
https://www.tensorflow.org/tensorboard
https://www.tensorflow.org/tensorboard
https://rustdesk.com
https://rustdesk.com
https://www.todesk.com
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372

	Introduction
	Related Work
	Remote Device Control
	AI Training Monitor

	Design and Implementation of OpsOrbital
	Overall Functions and Framework Design
	Account Management
	Connection Management
	Server Information Transmission
	Common Remote Control
	Background Monitor
	Security Management
	Authentication Mechanism
	Security Enhancements


	Future Work
	Conclusion
	Acknowledgment

